Ripple Voltage & ESR

Powering Integrated Circuits (ICs), and managing ripple voltage as it relates to ESR of capacitors

• Low voltage ICs require supply voltage (Vcc) to have reduced levels of ripple voltage

• Low ESR capacitors, such as solid polymer, hybrid and high cap ceramic chip (MLCCs) are used in combination to minimize ripple voltage in powering ICs
Powering Advanced Electronics

- Electronic products require power to operate
- Sources of the power can be from AC line (from *electric utilities*), Green Power (wind and solar) or from batteries
- Integrated circuits (ICs) are used in virtually all electronic equipment and have revolutionized the world of electronics & digital appliances
- This presentation looks at the requirements of capacitors used to power **Integrated Circuits (ICs)**

Advances & Trends in Integrated Circuits

Among the most advanced high speed integrated circuits are microprocessors or "cores", which control everything from computers, servers and cellular phones to digital microwave ovens.
Ripple Voltage & ESR

Powering Advanced Electronics

- Converting **AC Line Voltage to DC Voltage**
- Goal is to convert as efficiently as possible and provide clean & steady DC voltage (**Vcc**) to power integrated circuits

![AC-DC Converter, Switched Mode Power Supply Diagram]
Powering Advanced Electronics

- **DC to DC converters** are important in sub subsystems and in portable electronic devices, which are supplied with power from batteries.
- Such electronic devices often contain several **sub-circuits**, each with its own \((Vcc)\) voltage level requirement often **different from that supplied by the battery**.
- Additionally, the battery voltage declines as its stored power is drained.
- DC to DC converters maintain (regulate) steady voltage \((Vcc)\) to ICs from a decreasing battery voltage.
Ripple Voltage & ESR

DC Voltage (Vcc)

Ripple Voltage - Small unwanted residual periodic variation of the direct current (DC) output of a power supply.

Ripple voltage is undesirable in many high speed electronic circuit applications (such as ICs):

- Within digital circuits, ripple voltage reduces the threshold at which logic circuits give incorrect outputs and data is corrupted.
- Undesired noise in audio & video ICs.
Ripple Voltage & ESR

Power supply design for high-speed devices can often drive the need for low noise, low ripple voltage rails. ... high-speed devices require the control of output voltage (Vcc) ripple and noise in order to fully maximize their performance. ... Typically VCC ripple and noise requirements can range from 5-100mV (0.005V ~ 0.100V) [i.e. very low levels] – See Figure 1 Below

When designing any switch-mode power supply (SMPS), including a power module, it’s important to select output capacitors for minimizing voltage ripple. For many SMPS, this means selecting a sufficient amount of output capacitance with low ESR (effective series resistance). Voltage ripple is a function of the inductor ripple current, the switching frequency (FSW) and the output capacitor’s ESR. Therefore, minimizing the ESR in the output capacitors will minimize the output voltage ripple.

Figure 1
Equivalent Series Resistance (ESR) of Capacitors

Capacitors are needed for storage and smoothing of DC output (Vcc) of power supplies and converters.

- The equivalent series resistance or ESR of a capacitor is particularly important in power supply designs.
- When analyzing a circuit, a capacitor should be depicted as its equivalent circuit including the ideal capacitor, but also with its series ESR value (*show in Figure 2 below*).

\[
V = I \times R \\
\text{Ripple Voltage} = I \times \text{ESR}
\]

To reduce ripple voltage, circuit designers must use capacitors with Low ESR

Figure 2

Electrolytic Capacitor
- Polarized
- Type: Aluminum & Tantalum

Electrostatic Capacitor
- Non-Polarized
- Type: Ceramic & Film
Multiple Parallel Capacitors

- Multiple capacitors are typical wired in parallel connection (see Figure 3 below) to reduce ESR (and ripple voltage) and handle high current

\[
\frac{1}{ESR_{Total}} = \frac{1}{ESR_1} + \frac{1}{ESR_2} + \frac{1}{ESR_3} + \frac{1}{ESR_4}
\]

Ripple Voltage = \(I \times ESR_{Total} \)

Example: \(ESR_1 = ESR_2 = ESR_3 = ESR_4 \ldots \) All = 0.120 Ω (120mΩ)

\(ESR_{Total} = 0.030\Omega \) (30mΩ)

Ripple Voltage @ 1A = 0.030V (30mV)
Ripple Voltage & ESR

Capacitor Type Comparison: SMT / 100uF / 6.3V ~ 100VDC

Equivalent Series Resistance (ESR) & Ripple Voltage

<table>
<thead>
<tr>
<th>Capacitor Type</th>
<th>Size</th>
<th>Capacitance</th>
<th>Voltage Rating</th>
<th>100KHz ESR</th>
<th>Ripple Current Rating</th>
<th>Ripple Voltage @ 1000mA (1A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MLCC / X5R Ceramic</td>
<td>1210 (3.2mm X 2.5mm)</td>
<td>100uF ±20%</td>
<td>6.3VDC</td>
<td>Not Specified</td>
<td>Not Specified</td>
<td>< 0.005V</td>
</tr>
<tr>
<td>Polymer (Solid) Aluminum Electrolytic</td>
<td>D (7343)</td>
<td>100uF ±20%</td>
<td>6.3VDC</td>
<td>≤ 0.010 Ω</td>
<td>3500mA</td>
<td>≤ 0.010V</td>
</tr>
<tr>
<td>Hybrid Polymer Aluminum Electrolytic</td>
<td>6.3mm x 6.3mm</td>
<td>100uF ±20%</td>
<td>6.3VDC</td>
<td>≤ 0.036 Ω</td>
<td>1630mA</td>
<td>≤ 0.036V</td>
</tr>
<tr>
<td></td>
<td>6.3mm x 8mm</td>
<td></td>
<td>10VDC</td>
<td>≤ 0.035 Ω</td>
<td>1910mA</td>
<td>≤ 0.035V</td>
</tr>
<tr>
<td></td>
<td>8mm x 10.8mm</td>
<td></td>
<td>10VDC</td>
<td>≤ 0.018 Ω</td>
<td>1680mA</td>
<td>≤ 0.018V</td>
</tr>
<tr>
<td></td>
<td>8mm x 10.8mm</td>
<td></td>
<td>35VDC</td>
<td>≤ 0.030 Ω</td>
<td>1800mA</td>
<td>≤ 0.030V</td>
</tr>
<tr>
<td></td>
<td>10mm x 10.8mm</td>
<td></td>
<td>40VDC</td>
<td>≤ 0.015 Ω</td>
<td>1630mA</td>
<td>≤ 0.010V</td>
</tr>
<tr>
<td>Polymer Cathode Tantalum Electrolytic</td>
<td>A (3216)</td>
<td>100uF ±20%</td>
<td>6.3VDC</td>
<td>≤ 0.024 Ω</td>
<td>2400mA</td>
<td>≤ 0.024V</td>
</tr>
<tr>
<td></td>
<td>B (3528)</td>
<td></td>
<td>6.3VDC</td>
<td>≤ 0.025 Ω</td>
<td>1844mA</td>
<td>≤ 0.025V</td>
</tr>
<tr>
<td></td>
<td>V (7343)</td>
<td></td>
<td>10VDC</td>
<td>≤ 0.015 Ω</td>
<td>2886mA</td>
<td>≤ 0.015V</td>
</tr>
<tr>
<td>Liquid Electrolyte Aluminum Electrolytic</td>
<td>6.3mm x 6.3mm</td>
<td>100uF ±20%</td>
<td>6.3VDC</td>
<td>≤ 0.360 Ω</td>
<td>250mA</td>
<td>≤ 0.360V</td>
</tr>
<tr>
<td></td>
<td>8mm x 10.5mm</td>
<td></td>
<td>35VDC</td>
<td>≤ 0.080 Ω</td>
<td>850mA</td>
<td><0.080V</td>
</tr>
<tr>
<td></td>
<td>12.5mm x 14mm</td>
<td></td>
<td>50VDC</td>
<td>≤ 0.230 Ω</td>
<td>490mA</td>
<td>≤ 0.230V</td>
</tr>
<tr>
<td></td>
<td>16mm x 17mm</td>
<td></td>
<td>100VDC</td>
<td>≤ 0.170 Ω</td>
<td>793mA</td>
<td>≤ 0.170V</td>
</tr>
<tr>
<td>Std MnO2 Cathode Tantalum Electrolytic</td>
<td>B (3528)</td>
<td>100uF ±20%</td>
<td>6.3VDC</td>
<td>≤ 1.2 Ω</td>
<td>258mA</td>
<td><1.2V</td>
</tr>
<tr>
<td></td>
<td>C (6032)</td>
<td></td>
<td>6.3VDC</td>
<td>≤ 0.90 Ω</td>
<td>350mA</td>
<td><0.90V</td>
</tr>
<tr>
<td></td>
<td>V (7343)</td>
<td></td>
<td>10VDC</td>
<td>≤ 0.50 Ω</td>
<td>500mA</td>
<td><0.50V</td>
</tr>
</tbody>
</table>

Ripple Current Ratings limited by component Joule heating limitations (also referred to as ohmic heating or resistive heating):

Self-heat temperature ΔT limit of +5°C for aluminum electrolytic capacitors & maximum permissible ΔT of MLCCs generally restricted to +10°C ~ +20°C

www.NICcomp.com | Page 9
Capacitor Technology Comparison – CV Range

1uF ~ 2200uF / 2.5VDC ~ 100VDC

SMT Capacitor Offering by Technology

Capacitance Voltage Range Comparison

<table>
<thead>
<tr>
<th>Voltage</th>
<th>Capacitance</th>
<th>Icon</th>
<th>Type</th>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>100VDC</td>
<td>1.0uF</td>
<td>T</td>
<td>Tantalum Electrolytic</td>
<td>SMT Flat Chip</td>
</tr>
<tr>
<td></td>
<td>2.2uF</td>
<td>C</td>
<td>Ceramic Chip - MLCC</td>
<td>SMT Flat Chip</td>
</tr>
<tr>
<td></td>
<td>3.3uF</td>
<td>A</td>
<td>Aluminum Electrolytic</td>
<td>SMT V-Chip</td>
</tr>
<tr>
<td></td>
<td>4.7uF</td>
<td>S</td>
<td>Solid Aluminum Electrolytic</td>
<td>SMT Flat Chip</td>
</tr>
<tr>
<td></td>
<td>10uF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>22uF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>33uF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>47uF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>100uF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>150uF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>220uF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>330uF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>470uF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1000uF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2200uF</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Use NIC QuickBUILDER Tool

Easily select & compare capacitors

Ripple Voltage & ESR – Aluminum Electrolytic Capacitor Comparison

Comparison in Application:
Ripple Voltage over Temperature
DC-DC Converter

ADVANTAGE: Hybrid Construction *NSPE*
Has stable ESR over Temperature
Stable Ripple Voltage over Temperature

<table>
<thead>
<tr>
<th>Room Temperature: +25°C</th>
<th>Cold Temperature: -20°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low ESR liquid electrolyte e-cap</td>
<td>Low ESR liquid electrolyte e-cap</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Liquid Technology</td>
<td>Hybrid Technology</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Low ESR = Low Ripple Voltage</td>
<td>Low ESR = Low Ripple Voltage</td>
</tr>
</tbody>
</table>

www.NICcomp.com | Page 11
Ripple Voltage & ESR – Aluminum Electrolytic Capacitor Comparison

Capacitor Type Comparison
ESR over Temperature

Typical 100KHz ESR over Temperature Comparison
100uF @ 35VDC / 8mm Diameter

100KHz ESR: 1.30Ω
@ -55°C

Hybrid Construction NSPE
Much lower ESR & Z over Temperature

100KHz ESR: 0.023Ω @ -55°C

Liquid Electrolyte NACY

Advantage Hybrid Construction

NSPE-H101M35V8x10.8F
NACY101M35V8x10.5F

Liquid Technology

Best

www.NICcomp.com | Page 12
Capacitor Type Comparison: Liquid & Hybrid Construction

Low ESR = Low Ripple Voltage

<table>
<thead>
<tr>
<th>Series / Type</th>
<th>Liquid Technology</th>
<th>Hybrid Technology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case Size</td>
<td>16mm X 17mm</td>
<td>8mm X 10.8mm</td>
</tr>
<tr>
<td>100KHz ESR</td>
<td>0.060 Ω</td>
<td>0.035 Ω</td>
</tr>
<tr>
<td>100KHz RCR</td>
<td>1610mArms</td>
<td>1670mArms</td>
</tr>
<tr>
<td>Life Rating @ +105°C</td>
<td>2000 hours</td>
<td>10,000 hours</td>
</tr>
<tr>
<td>WVDC</td>
<td>50VDC</td>
<td>50VDC</td>
</tr>
<tr>
<td>Capacitance</td>
<td>1000uF</td>
<td>33uF</td>
</tr>
<tr>
<td>NIC PN</td>
<td>NACY102M50V16X17</td>
<td>NSPE-H330M50V8X10.8</td>
</tr>
<tr>
<td>SMT Format</td>
<td>16mm Diameter</td>
<td>8mm Diameter</td>
</tr>
<tr>
<td></td>
<td>17mm Height</td>
<td>10.8mm Height</td>
</tr>
<tr>
<td>Soldering Heat</td>
<td>+235°C Reflow</td>
<td>+260°C Reflow</td>
</tr>
</tbody>
</table>

Hybrid Advantages
- Much Smaller Size & Lower Profile
- Lower ESR
- Higher Current Rating
- Much Longer Life

Hybrid Technology
- Higher ESR Rated

www.NICcomp.com | Page 13
Capacitor Type Comparison

ESR over Frequency

<table>
<thead>
<tr>
<th>Capacitor Type</th>
<th>ESR @ 100KHz</th>
<th>ESR @ 1MHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum Electrolytic</td>
<td>0.097Ω</td>
<td>0.085Ω</td>
</tr>
<tr>
<td>Hybrid Construction NSPE-H</td>
<td>0.020Ω</td>
<td>0.014Ω</td>
</tr>
<tr>
<td>Liquid Electrolyte NACY</td>
<td>0.097Ω</td>
<td>0.085Ω</td>
</tr>
</tbody>
</table>

Lowest ESR = Lowest Ripple Voltage

Hybrid Construction NSPE-H offers the best performance with lower ESR and Z over frequency, making it the optimal choice for such applications.
Capacitor Comparison in Application: Liquid & Hybrid Construction In DC-DC Converter

Application: DC-DC converter
- Input: 6VDC Output: 3.5VDC
- Current: 5A Frequency: 250KHz

Low ESR Hybrid Capacitors:
- Reduce component count
- Less PCB space
- Fewer placements

Hybrid Advantages
- Reduce Number of Components per PCB

8 x 330uF/ 10VDC
- P/N: NACZ331M10V
- Low ESR liquid electrolyte e-cap

3 x 330uF/ 10VDC
- P/N: NSPE331M10V
- Hybrid electrolyte e-cap

www.NICcomp.com | Page 15
Ripple Voltage & ESR – Hybrid Aluminum Electrolytic Capacitors

Application:
DC-DC Converter for POE

48VDC application using LTC1871-1
PoE application ... High capacitance value with ESR less than 0.1 Ohm, current rating of >1.5A, and voltage rating of 63VDC (or higher)

LTC1871-1 DESCRIPTION
Wide Input Range, Boost, Flyback and SEPIC Controller.
.. Please note that the input capacitor can see a very high surge current when a battery is suddenly connected to the input of the converter and solid tantalum capacitors can fail catastrophically under these conditions. Be sure to specify surge-resistant capacitors!

Suggested Part Number:
NSPE-H330M63V10X10.8NBF
- 10,000 Hours @ 105°C
- 33uF @ 63VDC
- Low ESR = 0.030 Ω
- Ripple Current = 2100mA
- 10 x 10.8mm SMT Size

Hybrid Advantage:
- Ability to handle surge transient events
- Excellent inrush current characteristics
- Low ESR at High VDC

Lowest ESR = Lowest Ripple Voltage

www.NICcomp.com | Page 16
Ripple Voltage & ESR – Hybrid Aluminum Electrolytic Capacitors

Application:
DC-DC Converter - Fan Driver

Target Driver Chip
Nat Semi - LM5116
Synchronous Buck Controller
Wide output from 1.2V to **80V**

PN: NSPE-H151M35V10X10.8NBYF
- Operating Temperature -55°C ~ 105°C
- Capacitance **150uF ± 20%** / Voltage **35VDC**
- ESR **23mΩ** (+20°C/100KHz)
- Ripple Current Rating **2470mA** (100KHz/+105°C)
- Load Life **10,000Hrs @ +105°C**
- Dimensions: D = 10mm x L max. = 10.8mm

Lowest ESR = Lowest Ripple Voltage
Ripple Voltage & ESR – Hybrid Aluminum Electrolytic Capacitors

NSPE Series – Polymer Hybrid Aluminum Electrolytic Capacitors

<table>
<thead>
<tr>
<th>Series</th>
<th>Temp Range</th>
<th>Life Rate @ Max Temp</th>
<th>Voltage Rating</th>
<th>Cap Range</th>
<th>100KHz ESR</th>
<th>100Hz RCR @ Max Temp</th>
<th>Reflow Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSPE-S</td>
<td>-55°C +105°C</td>
<td>3K & 5Khrs</td>
<td>6.3 ~ 16VDC</td>
<td>10 ~ 1000uF</td>
<td>≥0.015Ω</td>
<td>≤3.89A</td>
<td>+250°C</td>
</tr>
<tr>
<td>NSPE-H</td>
<td>-55°C +105°C</td>
<td>5K ~ 10Khrs</td>
<td>25 ~ 125VDC</td>
<td>2.7 ~ 270uF</td>
<td>≥0.022Ω</td>
<td>≤2.53A</td>
<td>+260°C</td>
</tr>
<tr>
<td>NSPE-T</td>
<td>-55°C +125°C</td>
<td>1.5 ~ 3Khrs</td>
<td>25 ~ 125VDC</td>
<td>3.9 ~ 270uF</td>
<td>≥0.022Ω</td>
<td>≤1.52A</td>
<td>+260°C</td>
</tr>
<tr>
<td>NSPE-U</td>
<td>-55°C +125°C</td>
<td>2Khrs</td>
<td>6.3 ~ 16VDC</td>
<td>22 ~ 560uF</td>
<td>≥0.016Ω</td>
<td>≤2.19A</td>
<td>+250°C</td>
</tr>
<tr>
<td>NSPE-Y</td>
<td>-55°C +135°C</td>
<td>2Khrs</td>
<td>25 ~ 63VDC</td>
<td>22 ~ 270uF</td>
<td>≥0.022Ω</td>
<td>≤1.22A</td>
<td>+260°C</td>
</tr>
</tbody>
</table>

Lowest ESR = Lowest Ripple Voltage

Case Sizes: (D x H) mm

- 6.3 x 4.8
- 6.3 x 6.3
- 6.3 x 8
- 8 x 10.8
- 10 x 10.8
- 10 x 12.8
Hybrid Aluminum Electrolytic Capacitors – Road Map

NSPE Series – Polymer Hybrid Aluminum Electrolytic Capacitors

Current NSPE Specifications:
- NSPE-H +105°C 25V ~ 100VDC
- NSPE-T +125°C 25V ~ 100VDC
- NSPE-Y +135°C 25V ~ 63VDC

2011

125V (10uF, 10x10.5)
Higher Voltage
NSPE-H & NSPE-T

New Sizes
6.3x4.8 Low Profile
10x12.5 High Cap - Volt
NSPE-H, NSPE-T & NSPE-Y

2012

Higher Voltage
160VDC
10 x 10.5 size

Next Size
8x9.5 & 10x9.5
Low Profile

Higher Temp Rating
+150°C
8x12.8 & 10 x 14.8 sizes

www.NICcomp.com | Page 19
Summary:

Industry trends require output circuit capacitors, with low ESR, to meet reduced supply bias noise requirements (reduced ripple voltage).

Minimizing the ESR in the output capacitors is a continuing goal.

Lowest ESR capacitors types include:

- MLCC Ceramic
- Solid Polymer Aluminum Electrolytic
- Hybrid (Liquid & Solid Polymer) Construction Aluminum Electrolytic
- Polymer Cathode Tantalum Electrolytic

For Higher VDC circuit applications, Hybrid (Liquid & Solid Polymer) Construction Aluminum Electrolytic Capacitors have advantage of low ESR, stability over temperature, space savings and working voltage ratings up to 125VDC.
Additional Information Needed?
Need Samples?

Technical Support: tpmg@niccompcom
Sales Support: sales@niccomp.com

NIC Components offers unique performance passive components that provide advantages to design engineers to create high performance end products in smaller and lower total cost formats

• Surface Mount SMT formats (high speed auto placement)
• Pb-Free Reflow Compatible (high temperature reflow)
• Performance advantages over competing technologies