FEATURES

- PRECISE TOLERANCE AND TEMPERATURE COEFFICIENT
- EIA STANDARD CASE SIZES (0201 ~ 2512)
- LOW NOISE, THIN FILM (NiCr) CONSTRUCTION
- REFLOW SOLDERABLE (Pb FREE TERMINATION FINISH)

Compliant includes all homogeneous materials

RoHS

NTR Series

*See Part Number System for Details

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
$\begin{array}{ c c c c c c } \hline & 10000000000000000000000000000000000$
$\frac{\pm 0.1\% (B), \pm 0.25 (C), \pm 0.5\% (D), \pm 1\% (F)}{\pm 0.05\% (A)} = \frac{49.9 \times 100 \text{K}\Omega}{4.9.9 \times 100 \text{K}\Omega}$ $\frac{\pm 0.1\% (B), \pm 0.25\% (C), \pm 0.5\% (D), \pm 1\% (F)}{\pm 0.1\% (B), \pm 0.5\% (D), \pm 1\% (F)} = \frac{49.9 \times 100 \text{K}\Omega}{4.3 \times 511 \text{K}\Omega}$ $\frac{\pm 0.1\% (B), \pm 0.25\% (C), \pm 0.5\% (D), \pm 1\% (F)}{\pm 0.01\% (T), \pm 0.05\% (A), \pm 0.1\% (B), \pm 12 (X), \pm 3 (O)} = \frac{24.9 \times 15 \text{K}\Omega}{24.9 \times 59 \text{K}\Omega}$ $\frac{\pm 0.01\% (T), \pm 0.05\% (A), \pm 0.1\% (B), \pm 15 (S)}{\pm 0.01\% (T)} = \frac{24.9 \times 100 \text{K}\Omega}{4.7 \times 332 \text{K}\Omega}$ $\frac{\pm 0.01\% (B), \pm 0.25 (C), \pm 0.5\% (D), \pm 1\% (F)}{\pm 0.05\% (A)} = \frac{\pm 25 (C), \pm 50 (D)}{4.7 \times 332 \text{K}\Omega}$ $\frac{\pm 0.1\% (B), \pm 0.25 (C), \pm 0.5\% (D), \pm 1\% (F)}{\pm 0.05\% (A)} = \frac{\pm 25 (C), \pm 50 (D)}{1.0 \times 100 \text{K}\Omega}$
$\begin{array}{ c c c c c c c c }\hline & \pm 0.1\% (B), \pm 0.25\% (C), \pm 0.5\% (D), \pm 1\% (F) \\ \hline \pm 25(C), \pm 50(D) \\ \hline 4.3 \sim 511 K\Omega \\ \hline \pm 0.01\% (T), \pm 0.05\% (A), \pm 0.1\% (B), \\ \pm 2 (X), \pm 3 (O) \\ \hline \pm 2 (X), \pm 3 (O) \\$
$\begin{array}{ c c c c c c c c }\hline & \pm 0.1\% \ (B), \pm 0.25\% \ (C), \pm 0.5\% \ (D), \pm 1\% \ (F) & \pm 1.4\% \ (C) & \pm 4.3 \times 511 \mathrm{K}\Omega \\ \hline \pm 0.1\% \ (B), \pm 0.25\% \ (A), \pm 0.1\% \ (B), & \pm 1.4\% \ (C) & \pm 1.4\% $
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{ c c c c c c c }\hline & \pm 0.1\% \ (B), \\ \pm 0.25 \ (C), \pm 0.5\% \ (D), \pm 1\% \ (F) \\ \hline & \pm 0.25 \ (C), \pm 0.5\% \ (A) \\ \hline & \pm 0.05\% \ (A) \\ \hline & \pm 0.1\% \ (B), \pm 0.25 \ (C), \pm 0.5 \ (D), \pm 1\% \ (F) \\ \hline & \pm 25(C), \pm 50(D) \\ \hline & 1.0 \sim 1M\Omega \\ \hline & 1.0 \sim 1M\Omega \\ \hline & \pm 0.1\% \ (T) \ \pm 0.05\% \ (A) \ \pm 0.1\% \ (B) \\ \hline & \pm 1 \ (Z) \\ \hline & 24.9 \sim 30 \text{ KO} \\ \hline & 1.0 \sim 100 \text{ KO} \\ \hline & 1.0 $
$\frac{\pm 0.1\% (B), \pm 0.25 (C), \pm 0.5 (D), \pm 1\% (F)}{\pm 25 (C), \pm 50 (D)} \frac{\pm 20 (C), \pm 50 (D)}{1.0 \sim 1 M\Omega}$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$\pm 2 (X), \pm 3 (O)$ $\pm 2 (X), \pm 3 (O)$
±0.01% (T), ±0.05% (A), ±0.1% (B), ±0.25 (C), ±0.5% (D), ±1% (F) ±5 (S) 24.9 ~ 150KΩ E-24, E-96
NTR10 0805 1/10 (0.10) W 100V 200V ±0.01% (T) 24.9 ~ 200KΩ & E-192
$\begin{array}{c c} \pm 0.05\% (\text{A}), \pm 0.1\% (\text{b}), \\ \pm 10(\text{B}), \pm 13(\text{N}) \\ \pm 0.25 (\text{C}), \pm 0.5\% (\text{D}), \pm 1\% (\text{F}) \end{array} \qquad 4.7 \sim 1 \text{M}\Omega$
$\frac{\pm 0.05 \text{ (A)}}{\pm 25 \text{ (C)}, \pm 50 \text{ (D)}} = \frac{4.7 \sim 1 \text{ M}\Omega}{4.0 \times 10^{-10} \text{ (A)}}$
$\pm 0.1\% (B), \pm 0.25 (C), \pm 0.5 (D), \pm 1\% (F) \qquad \pm 2.5 (C), \pm 0.6 (D) \qquad 1.0 \sim 2M\Omega$
$ \frac{\pm 0.01\% (1), \pm 0.05\% (A), \pm 0.1\% (B),}{\pm 2 (X), \pm 3 (O)} \frac{24.9 \sim 49.9 \text{K}\Omega}{24.9 \sim 49.9 \text{K}\Omega} $
$\pm 0.01\%$ (1), $\pm 0.05\%$ (A), $\pm 0.1\%$ (B), ± 5 (S) 24.9 ~ 300KΩ ± 0.25 (C), $\pm 0.5\%$ (D), $\pm 1\%$ (F)
NTR12 1206 1/8 (0.125) W 150V 300V ±0.01% (T) 24.9 ~ 499KΩ
$ \begin{array}{c} \pm 0.05\% \text{ (A), } \pm 0.1\% \text{ (B),} \\ \pm 0.25 \text{ (C), } \pm 0.5\% \text{ (D), } \pm 1\% \text{ (F)} \end{array} \begin{array}{c} \pm 10(\text{B}), \pm 15(\text{N}) \\ 4.7 \sim 1.5 \text{M}\Omega \end{array} $
$\pm 0.05\%$ (A) $\pm 25(C) \pm 50(D)$ $4.7 \sim 1M\Omega$
±0.1% (B), ±0.25 (C), ±0.5 (D), ±1% (F) ±25(C), ±50(D) 1.0 ~ 2.49MΩ
±0.01% (T), ±0.05% (A), ±0.1% (B), ±1 (Z) ±2 (X), ±3 (O) 24.9 ~ 49.9KΩ
±0.01% (T), ±0.05% (A), ±0.1% (B), ±5 (S) 24.9 ~ 300KΩ ±0.25 (C), ±0.5% (D), ±1% (F) ±5 (S) 24.9 ~ 300KΩ
NTR20 1210 1/4 (0.25) W 150/ 300/ ±0.01% (T) 24.9 ~ 499KΩ
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
±0.05% (A) 4.7 ~ 1MΩ
±0.1% (B), ±0.25 (C), ±0.5 (D), ±1% (F) ±25(C), ±50(D) 1.0 ~ 2.49MΩ

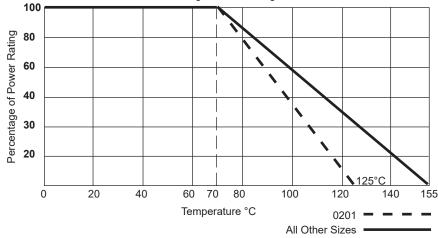
For 2010 and 2512 case sizes see page 2

Туре	EIA Size	PowerRating at 70°C	Max.*1 Working Voltage	Max.*2 Overload Voltage	Resistance Tolerance (Code)	Temperature Coefficient (ppm/°C)	Resistance Range (Ω)	Resistance Values	
					±0.01% (T), ±0.05% (A), ±0.1% (B),	±1 (Z) ±2 (X), ±3 (O)	24.9 ~ 100KΩ		
					±0.01% (T), ±0.05% (A), ±0.1% (B), ±0.25 (C), ±0.5% (D), ±1% (F)	±5 (S)	24.9 ~ 300KΩ		
NTR25	2010	1/4 (0.25) W	150V	300V	±0.01% (T)		24.9 ~ 499KΩ		
	20.0	., . (0.20)			±0.05% (A), ±0.1% (B), ±0.25 (C), ±0.5% (D), ±1% (F)	±10(B), ±15(N)	4.7 ~ 1MΩ		
					±0.05% (A)		4.7 ~ 1MΩ		
				(±0.1% (B), ±0.25 (C), ±0.5 (D), ±1% (F)	±25(C), ±50(D)	1.0 ~ 3MΩ	E-24, E-96 &	
					±0.01% (T), ±0.05% (A), ±0.1% (B),	±1 (Z) ±2 (X), ±3 (O)	24.9 ~ 100KΩ	е-192	
					±0.01% (T), ±0.05% (A), ±0.1% (B), ±0.25 (C), ±0.5% (D), ±1% (F)	±5 (S)	24.9 ~ 300KΩ		
NTR50	2512	1/2 (0.50) W	150V	300V	±0.01% (T)		24.9 ~ 499KΩ		
					±0.05% (A), ±0.1% (B), ±0.25 (C), ±0.5% (D), ±1% (F)	±10(B), ±15(N)	4.7 ~ 1MΩ		
					±0.05% (A)	±25(C), ±50(D)	4.7 ~ 1MΩ		
					±0.1% (B), ±0.25 (C), ±0.5 (D), ±1% (F)	$\pm 20(0), \pm 50(D)$	1.0 ~ 3MΩ		

Note *1 - Maximum allowable continuous Working Voltage for all resistors is the lower of the two values:

"Maximum Working Voltage" as specified above or

/Power rating (Watts) x Resistance (Ohms)


Note *2 - Maximum Overload Voltage for all resistors is the lower of the two values: "Maximum Overload Voltage" as specified above or

 $2 \times \sqrt{Power rating (Watts) \times Resistance (Ohms)}$

TYPICAL NOISE CHARACTERISTICS

Resistance		Case Size	
Value (Ω)	0603	0805	1206
1~9	-95dB	-95dB	-95dB
10 ~ 49	-85dB	-85dB	-85dB
50 ~ 99	-85dB	-85dB	-85dB
100 ~ 4.99K	-100dB	-100dB	-105dB
5K ~ 19.9K	-100dB	-100dB	-100dB
20K ~ 1M	-90dB	-100dB	-100dB

Power Derating Curve: For operation above 70°C, power rating must be derated according to the following chart:

ENVIRONMENTAL CHARACTERISTICS

Item	Specif	ication		Typical		Test Method*
nem	Tol.	Tol.	To	ol. > 0.05	%	Test Method
	≤ 0.05%	> 0.05%	0402	0603	0805	
	Sta	ndard Temp	erature Ra	nge: -55°	C ~ +155°	C (power derating above +70°C)
Temperature Coefficient of Resistance	As specified	As specified	-	-	-	MIL-STD-202F Method 304 +25/-55/+25/+125/+25
Short Time Overload	∆R ±0.05%	∆R ±0.2%	-0.001%	-0.002%	-0.005%	JIS-C-5201-1 4:13 RCWV x 2.5 or Max Overloading Voltage for 5 Seconds
Dielectric Withstanding Voltage	A spec	ks cified	265V	298V	415V	MIL-STD-202F Method 301 Apply Max. Overload Voltage for 1 minute
Insulation Resistance	>100	0MΩ		>10GΩ		MIL-STD-202F Method 302 Apply 100Vdc for 1 minute
Thermal Shock (N/A 0201 Size)	∆R ±0.05%	ΔR ±0.25%	0.001%	-0.02%	0.002%	MIL-STD-202F Method 107G -55°C ~ +150°C, 100 cycles
Load Life	∆R ±0.05%	∆R ±0.2%		no change)	MIL-STD-202F Method 108A RCWV +70°C, 1.5 hours ON, 0.5 hours OFF
	>7ΚΩ Δ	R ±0.5%	0.02%	0.03%	0.06%	Total time 1,000 ~ 1,048 hours
Humidity (Steady State)	∆R ±0.05%	∆R ±0.3%	0.003%	0.005%	0.007%	MIL-STD-202F Method 103B +40°C, 90% ~ 95% RH, RCWV 1.5 hours ON, 0.5 hours OFF Total time 1,000 ~ 1,048 hours
Resistance to Dry Heat (N/A 0201 Size)	∆R ±0.05%	∆R ±0.5%	0.07%	0.02%	0.025%	MIL-STD-202 Method 108 +125°C, 1000 hours
Low Temperature Operation (N/A 0201 Size)	∆R ±0.05%	∆R ±0.2%	0.006%	0.008%	0.001%	JIS-C-502-7.1 1 hour @ -65°C followed by 45 minutes of RCWV
Bending Strength	∆R ±0.05%	∆R ±0.2%	0.001%	-0.010%	0.002%	JIS-C-5202-6.1.4 Bending Amplitude 3mm for 10 seconds
Solderability		inimum erage		>95%		MIL-STD-202F Method 208H 245°C ±5°C, 5 ±0.5 seconds
Resistance to Soldering Heat	∆R ±0.05%	∆R ±0.2%	0.001%	-0.02%	0.006%	MIL-STD-202F Method 210E 260°C ±5°C for 10 ±1 seconds

*0201 testing per IEC 60115 - 1

E-24ValueCodeValueCodeValueCodeValueCodeValueCodeValueCode107041000111005113061150311808127111301210912410127111301221471715018154191582016016221165221652316923174242418017825200302053121032210322001962920030205312103223233624023737243382493925540233623236343535754332513405236324304430948330316493245033251340523745637456374563745637456364453644996855374549725605627363478649796647754972560568066478787806888879291090993931949539597696							,					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							E-96					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Value	Value	Code		Value	Code		Value	Code		Value	Code
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	100	100	01		102	-		105	03		107	04
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	110	110	05		113	06		115	07		118	08
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	120	121	09		124	10		127	11		130	12
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	130	133	13		137	14]	140	15		143	16
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	150	147	17		150	18		154	19		158	20
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	160	162	21		165	22		169	23		174	24
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	180	178	25		182	26		187	27		191	28
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	200	196	29		200	30		205	31		210	32
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	220	215	33		221	34		226	35		232	36
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	240	237	37		243	38		249	39		255	40
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	270	261	41]	267	42		274	43		280	44
360 348 53 357 54 365 55 374 56 390 383 57 392 58 402 59 412 60 430 422 61 432 62 442 63 453 64 470 464 65 475 66 487 67 499 68 510 511 69 523 70 536 71 549 72 560 562 73 576 74 590 75 604 76 620 619 77 634 78 649 79 665 80 680 681 81 698 82 715 83 732 84 750 85 768 86 787 87 806 88 820 825 89 845 90 866 91 887 92 <td>300</td> <td>287</td> <td>45</td> <td>]</td> <td>294</td> <td>46</td> <td></td> <td>301</td> <td>47</td> <td></td> <td>309</td> <td>48</td>	300	287	45]	294	46		301	47		309	48
390 383 57 392 58 402 59 412 60 430 422 61 432 62 442 63 453 64 470 464 65 475 66 487 67 499 68 510 511 69 523 70 536 71 549 72 560 562 73 576 74 590 75 604 76 620 619 77 634 78 649 79 665 80 680 681 81 698 82 715 83 732 84 750 85 768 86 787 87 806 88 820 825 89 845 90 866 91 887 92	330	316	49]	324	50]	332	51		340	52
430 422 61 432 62 442 63 453 64 470 464 65 475 66 487 67 549 72 510 511 69 523 70 536 71 549 72 560 562 73 576 74 590 75 604 76 620 619 77 634 78 649 79 665 80 680 681 81 698 82 715 83 732 84 750 750 85 768 86 787 87 806 88 820 825 89 845 90 866 91 887 92	360	348	53]	357	54]	365	55		374	56
470 464 65 475 66 487 67 499 68 510 511 69 523 70 536 71 549 72 560 562 73 576 74 590 75 604 76 620 619 77 634 78 649 79 665 80 680 681 81 698 82 715 83 732 84 750 750 85 768 86 787 87 806 88 820 825 89 845 90 866 91 887 92	390	383	57]	392	58]	402	59		412	60
510 511 69 523 70 536 71 549 72 560 562 73 576 74 590 75 604 76 620 619 77 634 78 649 79 665 80 680 681 81 698 82 715 83 732 84 750 750 85 768 86 787 87 806 88 820 825 89 845 90 866 91 887 92	430	422	61]	432	62]	442	63		453	64
560 562 73 576 74 590 75 604 76 620 619 77 634 78 649 79 665 80 680 681 81 698 82 715 83 732 84 750 750 85 768 86 787 87 806 88 820 825 89 845 90 866 91 887 92	470	464	65	1	475	66]	487	67		499	68
620 619 77 634 78 649 79 665 80 680 681 81 698 82 715 83 732 84 750 750 85 768 86 787 87 806 88 820 825 89 845 90 866 91 887 92	510	511	69	1	523	70]	536	71		549	72
680 681 81 698 82 715 83 732 84 750 750 85 768 86 787 87 806 88 820 825 89 845 90 866 91 887 92	560	562	73	1	576	74]	590	75	1	604	76
750 750 85 768 86 787 87 806 88 820 825 89 845 90 866 91 887 92	620	619	77]	634	78]	649	79	1	665	80
820 825 89 845 90 866 91 887 92	680	681	81]	698	82]	715	83]	732	84
	750	750	85]	768	86]	787	87		806	88
910 909 93 931 94 953 95 976 96	820	825	89		845	90]	866	91		887	92
	910	909	93		931	94		953	95		976	96

STANDARD E-24, E-96 AND E-192 VALUES AND 0603 RESISTANCE CODES

* Special E192 resistance values are supported on all case sizes of NTR series. Please review your E192 value requirements with NIC, as special terms apply, and E192 values are supplied without component resistance value marking.

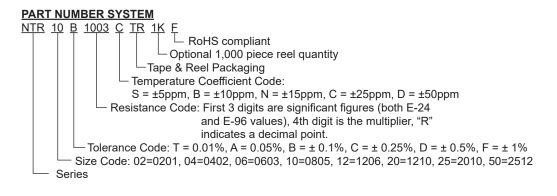
MULTIPLIER CODE

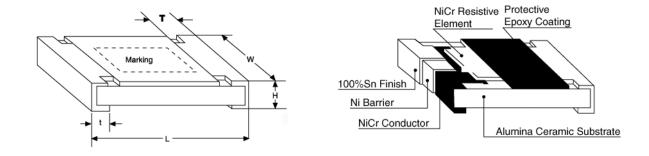
Code	Α	B, b	С	D, d	Е	F	G	Н	Х	Y	Ζ
Multiplier	10 ⁰	10 ¹	10 ²	10 ³	104	105	10 ⁶	10 ⁷	10-1	10 ⁻²	10 ⁻³

E-192*											
Value	Value	Value	Value	Value	Value						
100	147	215	316	464	681						
101	149	218	320	470	690						
102	150	221	324	475	698						
104	152	223	328	481	706						
105	154	226	332	487	715						
106	156	229	336	493	723						
107	158	232	340	499	732						
109	160	234	344	505	741						
110	162	237	348	511	750						
111	164	240	352	517	759						
113	165	243	357	523	768						
114	167	246	361	530	777						
115	169	249	365	536	787						
117	172	252	370	542	796						
118	174	255	374	549	806						
120	176	258	379	556	816						
121	178	261	383	562	825						
123	180	264	388	569	835						
124	182	267	392	576	845						
126	184	271	397	583	856						
127	187	274	402	590	866						
129	189	270	407	597	876						
130	191	280	412	604	887						
132	193	284	417	612	898						
133	196	287	422	619	909						
135	198	291	427	626	920						
137	200	294	432	634	931						
138	203	298	437	642	942						
140	205	301	442	649	953						
142	208	305	448	657	965						
143	210	309	453	665	976						
145	213	312	459	673	988						

4

PART MARKING


- 1. No marking on 0402 case size.
- 2. Marking for 0603 case size:
 - E-24 values and E-96 values: \pm 1% (F), \pm 0.5% (D), \pm 0.25% (C). \pm 0.1% (B) tolerances
 - E-192 values: ± 0.1% (B) tolerance (No Marking)


3. Marking for 0805, 1206, 2010 and 2512 case sizes: E-24 and E-96 values - ±1%(F), ±0.5% (D), ±0.25%(C), ±0.1% (B) tolerances E-192 values: ±0.1% (B) tolerance (No Marking)

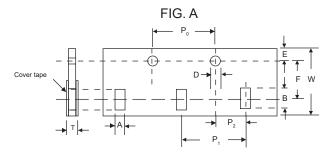
4 DIGIT MARKING SYSTEM - First 3 digits are the significant figures, the 4th digit is the mulitplier. "R"= decimal point.

Examples: 0R10 = 0.10 ohms, 1R00 = 1.0 ohms, 22R1=22.1 ohms, 3320= 332 ohms, 4751=4.75K ohms, 1132=11.3K ohms, 6493=649K ohms

	- ()						
Туре	Power Rating	EIA Size	L	W	Н	Т	t
NTR02	1/32W	0201	0.58 ± 0.05	0.29 ± 0.05	0.23 ± 0.03	0.12 ± 0.05	0.15 ± 0.05
NTR04	1/16W	0402	1.00 ± 0.05	0.50 ± 0.05	0.30 ± 0.05	0.20 ± 0.10	0.20 ± 0.10
NTR06	1/16W	0603	1.55 ± 0.10	0.80 ± 0.10	0.45 ± 0.10	0.30 ± 0.20	0.30 ± 0.20
NTR10	1/10W	0805	2.00 ± 0.15	1.25 ± 0.15	0.55 ± 0.10	0.30 ± 0.20	0.40 ± 0.25
NTR12	1/8W	1206	3.05 ± 0.15	1.55 ± 0.15	0.55 ± 0.10	0.42 ± 0.20	0.35 ± 0.25
NTR20	1/4W	1210	3.10 ± 0.15	2.40 ± 0.15	0.55 ± 0.10	0.40 ± 0.20	0.55 ± 0.25
NTR25	1/4W	2010	4.90 ± 0.15	2.40 ± 0.15	0.55 ± 0.10	0.60 ± 0.30	0.50 ± 0.25
NTR50	1/2W	2512	6.30 ± 0.15	3.10 ± 0.15	0.55 ± 0.10	0.60 ± 0.30	0.50 ± 0.25
	.,						

NIC COMPONENTS CORP.

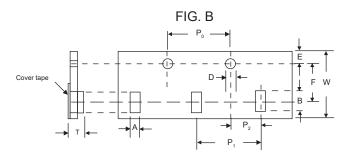
DIMENSIONS (mm)


TAPING SPECIFICATIONS

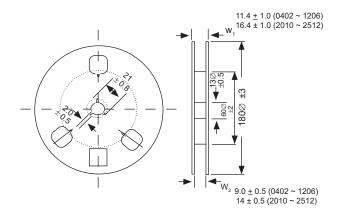
(1) Availability

Tuno	Power Rating	EIA Size		Carrier Tape		Qty per Reel (pcs)		
Туре	Fower Rating	EIA SIZE	Fig.	Material	Width (mm)	Standard	Optional	
NTR02	1/32W	0201	A			10,000	1,000	
NTR04	1/16W	0402	A			10,000	1,000	
NTR06	1/16W	0603	A	Deper	8			
NTR10	1/10W	0805	A	Paper	0	5.000	1,000	
NTR12	1/8W	1206	A			5,000	1,000	
NTR20	1/4W	1210	A					
NTR25	1/4W	2010	В	Diactic	12	4 000	1 000	
NTR50	1/2W	2512	В	Plastic	12	4,000	1,000	

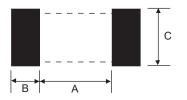
(2) PAPER TAPE DIMENSIONS (mm) FIG. A


Туре	EIA Size	A	В	D	E	F	P	P ₁	Ρ,	W	Т
NTR02	0201	0.40 ± 0.05	0.70 ± 0.05				-	2.0 ± 0.05	_		0.42 ± 0.02
NTR04	0402	0.70 ± 0.05	1.16 ± 0.05					2.0 ± 0.05			0.40 ± 0.03
NTR06	0603	1.10 ± 0.05	1.90 ± 0.05	1.55 ±0.05	1 75 +0 05	3.50 ±0.05			2.0 ±0.05	0 0 + 0 1	0.60 ± 0.03
NTR10	0805	1.60 ± 0.05	2.37 ± 0.05		1.75 ±0.05	3.50 ±0.05	4.0 ±0.10	4.0 ±0.05	2.0 ±0.05	0.0 ±0.1	
NTR12	1206	2.00 ± 0.05	3.55 ± 0.05				4.0 ±0.05			0.75 ± 0.05	
NTR20	1210	2.75 ± 0.05	3.40 ± 0.05	1.60 ± 0.10							

(3) PLASTIC EMBOSSED TAPE DIMENSIONS (mm)


FIG. B

Туре	EIA Size	A	В	D	E	F	P	P ₁	Ρ,	W	Т
NTR25	2010	2.85 ±0.10	5.45 ±0.10	1.50 ±0.10	1.75 ±0.10	5.50 ±0.05	4.0 ±0.10	4.0 ±0.05	2.0 ±0.05	12.0 ±0.1	1.0 ±0.20
NTR50	2512	3.40 ±0.10	6.65 ±0.10	1.50 ±0.10	1.75 ±0.10	5.50 ± 0.05	4.0 ±0.10	4.0 ±0.05	2.0 ±0.05	12.0 ±0.1	1.0 ±0.20



REEL DIMENSIONS (mm)

LAND PATTERN DIMENSIONS (mm)

Туре	EIA Size	А	В	С
NTR02	0201	0.25	0.30	0.40 ± 0.2
NTR04	0402	0.50	0.50	0.60 ± 0.2
NTR06	0603	0.80	1.00	0.90 ± 0.2
NTR10	0805	1.00	1.00	1.35 ± 0.2
NTR12	1206	2.00	1.15	1.70 ± 0.2
NTR20	1210	2.00	1.15	2.50 ± 0.2
NTR25	2010	3.60	1.40	2.50 ± 0.2
NTR50	2512	4.90	1.60	3.10 ± 0.2

Reflow Soldering Heat Profile and Limits
--

→ www.niccomp.com/resource/files/resistive/NIC-ChipR-Reflow-Sept2020-Rev2.pdf Wave soldering? – Please review your wave soldering process profile with NIC: tpmg@niccomp.com

